The Basics of Interpretation

Jennifer Hale, M.D.

Valley Baptist Family Practice Residency

Objectives

- Identify the components of PFTs
- Describe the indications
- Develop a stepwise approach to interpretation
- Recognize common patterns
- Apply this information to patient care

Jennifer Hale, M.D.

Which of the following is used to follow disease severity in COPD patients?

- a. Total lung capacity (TLC)
- b. Degree of responsiveness to bronchodilators
- c. Forced vital capacity (FVC)
- d. Forced expiratory volume in 1 second
- e. Diffusing capacity (DLCO)

Jennifer Hale, M.D.

- A 36yo WF, non-smoker, presents to your office for follow-up of 'recurrent bronchitis.' You suspect asthma and decide to order spirometry. Which of the following would you include in your prescription for testing?
- a. Diffusing Capacity (DLCO)
- b. If no obstruction present, add trial of bronchodilator
- c. If no obstruction present, perform methacholine challenge
- d. Flow volume loop
- e. b and c

Jennifer Hale, M.D.

A 68yo HM is admitted to the ICU with acute respiratory distress. A CXR obtained in the ED demonstrates bilateral pulmonary infiltrates, and his DLCO is elevated. What is the most likely diagnosis?

- a. Pulmonary edema
- b. Aspiration pneumonitis
- c. Pulmonary emboli
- d. Alveolar hemorrhage
- e. Interstitial lung disease

The Purpose

Provide quantifiable, reproducible measurement of lung function

Description

- Spirometry
- Flow Volume Loop
- Bronchodilator response
- Lung volumes
- Diffusion capacity (DLCO)
- Bronchoprovocation testing
- Maximum respiratory pressures
- Simple and complex cardiopulmonary exercise testing

Indications — Diagnosis

- Evaluation of signs and symptoms
 - SOB, exertional dyspnea, chronic cough
- Screening at-risk populations
- Monitoring pulmonary drug toxicity
- Abnormal study
 - CXR, EKG, ABG, hemoglobin
- Preoperative assessment

Indications — Diagnosis

- Evaluation of signs and symptoms
 - SOB, exertional dyspnea, chronic cough
- Screening at-risk populati
- Monitoring pulmonary dru (former & current)
- Abnormal study
 - CXR, EKG, ABG, hemoglobin
- Preoperative assessment

Smokers > 45vo

Indications — Diagnosis

- Evaluation of signs and symptoms
 - SOB, exertional dyspnea, chronic cough
- Screening at-risk populations
- Evaluation of occupational symptoms
- Monitoring pulmonary drug toxicity
- Abnormal study
 - CXR, EKG, ABG, hemoglobin
- Preoperative assessment

Indications — Prognostic

Assess severity

Follow response to therapy

Determine further treatment goals

Referral for surgery

Disability

Spirometry

- Simple, office-based
- Measures flow, volumes
- Volume vs. Time
- Can determine:
 - Forced expiratory volume in one second (FEV₁)
 - Forced vital capacity (FVC)
 - FEV₁/FVC
 - Forced expiratory flow 25%-75% (FEF₂₅₋₇₅)

Lung Volumes

Spirometry

Normal Spirometry

Obstructive Pattern

Decreased FEV₁

Decreased FVC

Decreased FEV₁/FVC

- <70% predicted

FEV₁ used to follow severity in COPD

Obstructive Lung Disease — Differential Diagnosis

- Asthma
- COPD
 - chronic bronchitis
 - emphysema
- Bronchiectasis
- Bronchiolitis
- Upper airway obstruction

Restrictive Pattern

Decreased FEV₁

Decreased FVC

■ FEV₁/FVC normal or increased

Restrictive Lung Disease —Differential Diagnosis

- Pleural
- Parenchymal
- Chest wall
- Neuromuscular

Spirometry Patterns

Bronchodilator Response

- Degree to which FEV₁ improves with inhaled bronchodilator
- Documents reversible airflow obstruction
- Significant response if:
 - FEV₁ increases by 12% and >200ml
- Request if obstructive pattern on spirometry

Flow Volume Loop

- "Spirogram"
- Measures forced inspiratory and expiratory flow rate
- Augments spirometry results
- Indications: evaluation of upper airway obstruction (stridor, unexplained dyspnea)

Flow Volume Loop

Upper Airway Obstruction

Variable intrathoracic obstruction

Variable extrathoracic obstruction

Fixed obstruction

Upper Airway Obstruction

Lung Volumes

Measurement:

- helium
- nitrogen washout
- body plethsmography

Indications:

- Diagnose restrictive component
- Differentiate chronic bronchitis from emphysema

Lung Volumes – Patterns

Obstructive

- TLC > 120% predicted
- RV > 120% predicted

Restrictive

- TLC < 80% predicted
- RV < 80% predicted

Diffusing Capacity

- Diffusing capacity of lungs for CO
- Measures ability of lungs to transport inhaled gas from alveoli to pulmonary capillaries
- Depends on:
 - alveolar—capillary membrane
 - hemoglobin concentration
 - cardiac output

Diffusing Capacity

Decreased DLCO

(<80% predicted)

- Obstructive lung disease
- Parenchymal disease
- Pulmonary vascular disease
- Anemia

Increased DLCO

(>120-140% predicted)

- Asthma (or normal)
- Pulmonary hemorrhage
- Polycythemia
- Left to right shunt

DLCO — Indications

- Differentiate asthma from emphysema
- Evaluation and severity of restrictive lung disease
- Early stages of pulmonary hypertension
- Expensive!

Case 1

CC/HPI: A 36yo WM, nonsmoker, presents to your clinic with c/o episodic cough for 6mo. Also reports occasional wheezing and dyspnea with exertion during softball practice.

Exam: Heart RRR, no murmurs; Lungs CTAB, no labored breathing

Based on your exam and a thorough review of systems, you suspect asthma and decide to order spirometry for further evaluation.

Continued...

PFTs: FEV₁ 86% predicted

FEV₁/FVC 82% predicted

Flow Volume Loop: normal inspiratory and expiratory pattern

You still suspect asthma. What is your next step in the workup of this patient?

Bronchoprovocation

 Useful for diagnosis of asthma in the setting of normal pulmonary function tests

- Common agents:
 - Methacholine, Histamine, others
- Diagnostic if: ≥20% decrease in FEV₁

Continued...

PFT Interpretation Strategy

What is the clinical question?

What is "normal"?

Did the test meet American Thoracic Society (ATS) criteria?

Don't forget (or ignore) the flow volume loop!

Obstructive Pattern — Evaluation

Spirometry

FEV₁, FVC: decreased

FEV₁/FVC: decreased (<70% predicted)</p>

FV Loop "scooped"

Lung Volumes

TLC, RV: increased

Bronchodilator responsiveness

Restrictive Pattern – Evaluation

Spirometry

■ FVC, FEV₁: decreased

■ FEV₁/FVC: normal or increased

FV Loop "witch's hat"

DLCO decreased

Lung Volumes

TLC, RV: decreased

• Muscle pressures may be important

PFT Patterns

- Emphysema
 - FEV₁/FVC <70%</p>
 - "Scooped" FV curve
 - TLC increased
 - Increased compliance
 - DLCO decreased

- Chronic Bronchitis
 - FEV₁/FVC <70%</p>
 - "Scooped" FV curve
 - TLC normal
 - Normal compliance
 - DLCO usually normal

PFT Patterns

Asthma

FEV₁/FVC

normal or decreased

DLCO

normal or increased

But PFTs may be normal → bronchoprovocation

Jennifer Hale, M.D.

Which of the following is used to follow disease severity in COPD patients?

- a. Total lung capacity (TLC)
- b. Degree of responsiveness to bronchodilators
- c. Forced vital capacity (FVC)
- d. Forced expiratory volume in 1 second
- e. Diffusing capacity (DLCO)

Jennifer Hale, M.D.

Which of the following is used to follow disease severity in COPD patients?

- a. Total lung capacity (TLC)
- b. Degree of responsiveness to bronchodilators
- c. Forced vital capacity (FVC)
- d. Forced expiratory volume in 1 second
- e. Diffusing capacity (DLCO)

Jennifer Hale, M.D.

- A 36yo WF, non-smoker, presents to your office for follow-up of 'recurrent bronchitis.' You suspect asthma and decide to order spirometry. Which of the following would you include in your prescription for testing?
- a. Diffusing Capacity (DLCO)
- b. If no obstruction present, add trial of bronchodilator
- c. If no obstruction present, perform methacholine challenge
- d. Flow volume loop
- e. b and c

Jennifer Hale, M.D.

- A 36yo WF, non-smoker, presents to your office for follow-up of 'recurrent bronchitis.' You suspect asthma and decide to order spirometry. Which of the following would you include in your prescription for testing?
- a. Diffusing Capacity (DLCO)
- b. If no obstruction present, add trial of bronchodilator
- c. If no obstruction present, perform methacholine challenge
- d. Flow volume loop
- e. b and c

Jennifer Hale, M.D.

A 68yo HM is admitted to the ICU with acute respiratory distress. A CXR obtained in the ED demonstrates bilateral pulmonary infiltrates, and his DLCO is elevated. What is the most likely diagnosis?

- a. Pulmonary edema
- b. Aspiration pneumonitis
- c. Pulmonary emboli
- d. Alveolar hemorrhage
- e. Interstitial lung disease

Jennifer Hale, M.D.

- A 68yo HM is admitted to the ICU with acute respiratory distress. A CXR obtained in the ED demonstrates bilateral pulmonary infiltrates, and his DLCO is elevated. What is the most likely diagnosis?
- a. Pulmonary edema
- b. Aspiration pneumonitis
- c. Pulmonary emboli
- d. Alveolar hemorrhage
- e. Interstitial lung disease

Questions?

References

- 1. Aboussouan LS, Stoller JK: Flow volume loops. UpToDate, 2006.
- 2. Bahhady IJ, Unterborn J: Pulmonary function tests: an update. Consultant. 2003.
- 3. Barreiro, TJ, Perillo I: An approach to interpreting spirometry. Am Fam Physician. 2004 Mar 1;69(5):1107-14.
- 4. Chesnutt MS, Prendergast TJ. <u>Current Medical Diagnosis and Treatment.</u> New York: Appleton and Lange, 2006.
- 5. Enright PL: Diffusing capacity for carbon monoxide. UpToDate, 2007.
- 6. Enright PL: Overview of pulmonary function testing in adults. UpToDate, 2007.
- 7. Irvin CG: Bronchoprovocation testing. UpToDate, 2006.
- 8. West JB. Respiratory Physiology: The Essentials. Lippincot Williams & Wilkins, 2000.